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Images: The Importance of Edges

Images and Edges: Key Features

e An example

e Edges contain the shape information

e Location and Magnitude important

It is therefore natural to consider measures of images
u: Q C R?* = R of the form:

Fu) = / (I Vul)dp

We will look at ¢(xz) = |z|? p € (0, 2].

In images F'(u) = VulPdu = pixel differences|”.
Q



Let's look at the very simple discrete picture
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Suppose we want to find the “picture” with minimum F'(u)
comprised of the three pixels above with the constraint that
U9 — w1 = a constant, call it U.

e cost of jump z; = |z;|”
e define cost per length, Cf, to be |z;|P/|x,|
e we want to minimize

[z1|” + |z2|” = |z1| * Cr(z1) + |z2| * CL(x2)
= U= ('?l *x Cr(x1) + % * CL(a?2))

= U * (average cost per length)



We consider the (1-dimensional) continuous case:

we compute F'(u) = [, |[Vu|Pdz

dope=s

i

——— graphofu
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(p>1) F(u) = s"(Az) = ((Azzz)p)_l - (A:z:d)P—l Azsso °

(p < 1) F(u) = (sAz)P(Az)'™P = dP(Ax)' P A 0

Moral of the Story:

e For p > 1 discontinuities are avoided ... smooth u preferred,

e For p < 1 discontinuities cost nothing ... step u preferred,

e BUT for p = 1 only the variation or jump magnitude “counts”

no bias towards either smooth or step!



Aside: Lagrange Multiplier Picture

Problem Maximize f(x) subject to g(z) = c.
Multiplier method Find stationary points of

L(z, ) = f(z) + Ag(x)
Do ... solve DL(x,\) = Df(x) + ADg(x) =0

A picture:
Gradient of g

Gradientof f ...




Aside: BV Functions

We can define a space of functions whose norm is based on the
measure we introduced to look at edges, F'(f) = [, |V fldpu.

The space will be those f : RY — R such that

f e L'(Q) and /|Df| < oo
Q

where we define [, |D f| when f & C*(2) by

/ |Df| = sup {/ fdiv(g)dx : g € Ccl(Q,RN), lg(z)] <1 Vz € Q}
Q Q

In this case we define the BV norm by:

1715y = ||f||L1+/Q|Df|

The space of functions f such that || f||sy < co together with the
BV norm is a Banach space of great usefulness and versatility.

TV(f) = [, |Df| (= [ |V f]| when f € C') is the Total
Variation of f.



. a bit more: level sets and feature scale dependence

TV (u) can be also computed as an integral over level sets:

TV(u)=/Q|Du|d:cdy:/RL(u,r)dr

where

L(wu,r) = length of the boundary of the r-level set.



Total Variation Regularization

Now we consider the image recovery problem and the role that
optimization and total variation play in regularized reconstruction
from projections.

A common regularization of the radiographic image reconstruction
problem is the use of the L? norm to regularize the inverse problem.

Uoptimal = Arg mgn F(u) = arg mgn (||Pu — cl||2 + ||u||2)
where P is the radiographic projection operator and d is the
radiographic data. Another regularization is given by the
minimization:

Uoptimal = arg min F'(u) = arg min <||Pu — d||2 + / |Vu|2)
u u 0

But, as noted above, the |[Vu|? is biased against edges, while |[Vu| is
biased neither for or against edges. This leads us to consideration of:

Uoptimal = arg min F'(u) = arg min (||Pu —d||? —I—/ |Vu|)
u u Q



Looking at the regularization more carefully:

noise ||Pu — d||* = o

optimization We use Lagrange Multipliers

Discretization We work on discrete images

So we end up with the following continuous functional and it's
discrete counterpart:

F(u) = A||Pu — d||* + / |V ul
Q
F(u) = M|Pu —d||* + Z |V jul
1,J

where V; ; is the discretized gradient. For specific choices of A we
implicitly seek solutions constrained by ||Pu — d||* = 03).

Technically speaking, we need the discretized functional to be strictly
convex and coercive for guaranteed existence and uniqueness. It also
permits us to prove linear convergence.



A Picture: two cylinders

Recalling our pictures of the Lagrange Multipliers and specializing
them to our functional F'(u):

positive span of u = (1,1,1,...,1)~——\ P
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A Fixed point method

If we compute the derivative of the functional

1
F(u)=a) |Viju|+ §||Pu —d||?

1,]

(where o = %) and set it to zero, we get

We turn this into an iterative method that (we can prove) converges
to a unique fixed point. The iterative method is given by

;;..u
T 1,7 Wk+1 T T
ozg V.. | —) + P Pu — P d=20
i Z’J(Wz‘,jukI) e

At each step we solve for ug+1 using a conjugate gradient method. A

last modification to remove the singularity in derivative of the TV
term is done by noticing that

Vul = \/|Vul? = /| Vul? + 8

for small 3.
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Convergence results and rates

In Chan and Mulet's paper on the convergence of the fixed point
method they prove that

|F(uns1) — F(u')] < y[F(ug) — F(u”)]

where

0<~v<1.

Furthermore the uy's converge with a linearly convergence rate of at

most /7.

While small 8's tend to slow the convergence, it appears from
numerical experiments that v —+ 1 — e fore > 0 as 8 — 0.
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Aside: Other Methods

Time Marching This is the method used by Rudin, Osher, and
Fatemi. Essentially one simply evolves u by treating the gradient
of F' as the time right hand side of a differential equation. In
other words one solves

us = —DF(u).
Primal-Dual In this method one uses the Fenchel Transform

together with results from variational theory to reformulate the
problem. One can obtain much better convergence results.
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Initial Results: BCO4

This data was taken at LANSCE.

Now we show preliminary results obtained by total variation
minimization using the fixed point method. The results were obtained
using our own hacks of Pep Mulet's ImageTool, a matlab package.
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BCO4 Results: continued
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BCO4 Results: continued
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A Closer Look: Simulated
Radiographs

In these experiments we have been using a modified version of the
fixed point code of Curt Vogel's to begin to explore:

The object and truncated SVD reconstruction: The actual objects.




Object 2 results: 1% noise
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Reconstruction

Object 2 results: 10% noise
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Reconstruction
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Object 4 results: 10% noise
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Reconstruction
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Residual for the simulated radiograph results.

Residual of Minimal solutions
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Current work

Primal-Dual As mentioned above this method can potentially speed
up the convergence to the minimum of F'(u). There may be a
problem in the implementation related to the size of PTP. We
are currently working on this with David Strong.

... from the paper by Chan, Golub, and Mulet (next page) ...
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F1G. 7. Plot of the La-norm of the gradient g(u) of the objective function versus iterations for
the different methods.
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F1G. 8. Plot of the La-norm of the difference between the current iterate and the solution for the
problem computed by Newton’s method with high accuracy versus iterations for the different methods.
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F1G. 9. Plot of # pizels which differ more than .001 (relatively) from the solution for the problem
computed by Newton’s method with high accuracy versus iterations for the different methods.
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Bundle Methods In these methods, one is trying to use information
obtained from a sequence of measurements of the non-smooth
cost function to form an estimate of the sub-differential of the
cost function.

Feature Corrections Because of the feature scale dependent manner
in which the denoising effects the reconstructions, it makes sense
to investigate recovered feature based corrections.

Restricted Searches In this formulation one simply looks only in the
span of N (the null space of P) for increments, i.e. one solves

arg mwin TV(NT¢ + Uspd)

where 1) is the vector of coefficients for our null space
perturbation.

Rigorous Results Convergence results and rates for modified
methods suggested by the applications to radiography.

Other Priors Incorporation of other prior constraints into the
variational framework.

Geometry and Dynamics Theoretical study of the parameterized
dynamics induced by the iterative solution to the variational
problem.
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